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The team
@ Aalto University School of Science, Espoo, Finland

I Satoru Ishikawa, doctoral student
I Markus Koskela, post.doc., left the group in summer 2014
I Mats Sjöberg, PhD to be, left the group in summer 2014
I Rao Muhammad Anwer, post.doc, started in winter 2014
I Jorma Laaksonen, teaching research scientist
I Erkki Oja, professor retiring in winter 2015



Overview
the big picture

I Four submissions in SIN Main task:
I PicSOM 4 Muminpappan A 0.2000 (0.1951)
I PicSOM 3 Hattifnattar D 0.2900 (0.2843)
I PicSOM 2 Snusmumriken D 0.2777 (0.2722)
I PicSOM 1 Mårran D 0.2936 (0.2880)
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Some characters from Moomin Valley
Naming of our runs

I Tove Jansson
I Finnish Swede novelist, painter and comic strip author
I creator of the Moomins
I 9 Aug 1914 – 27 Jun 2001

Tove Muminpappan Hattifnattar Snusmumriken Mårran
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Linear Homogeneous Kernel Map SVM classifiers
old works

I Mats Sjöberg, Markus Koskela, Satoru Ishikawa, and Jorma
Laaksonen. Real-time large-scale visual concept detection with
linear classifiers. In Proceedings of 21st International
Conference on Pattern Recognition, Tsukuba, Japan, November
2012.

I Mats Sjöberg, Markus Koskela, Satoru Ishikawa, and Jorma
Laaksonen. Large-scale visual concept detection with explicit
kernel maps and power mean SVM. In Proceedings of ACM
International Conference on Multimedia Retrieval (ICMR2013),
pages 239–246, Dallas, Texas, USA, April 2013. ACM.



Fusion of CNN activation features
recent work

I Markus Koskela and Jorma Laaksonen. Convolutional network
features for scene recognition. In Proceedings of the 22nd
International Conference on Multimedia, Orlando, Florida,
November 2014:

I state-of-the-art results in scene recognition with four
benchmarks:

I scenes-15 0.921
I uiuc-sports 0.948
I indoor-67 0.701
I sun397 0.547

I four different CNN features as combinations of
I 2 different training sets: ILSVRC 2010 and 2012
I 2 different CNN architectures: Krizhevsky and Zeiler

I full image features vs. spatial pyramid features
I late geometric mean fusion



Fusion of CNN activation features
CNN network models

I Caffe library implementations of:
I Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton.

ImageNet classification with deep convolutional neural
networks. In NIPS, 2012:

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.
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I Matthew Zeiler and Rob Fergus. Visualizing and
understanding convolutional networks. arXiv:1311.2901,
November 2013:Visualizing and Understanding Convolutional Networks
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Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as
the input. This is convolved with 96 di↵erent 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y.
The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within
3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 di↵erent 55 by 55 element feature
maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 · 6 · 256 = 9216 dimensions). The final layer is a C-way softmax
function, C being the number of classes. All filters and feature maps are square in shape.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 4. Evolution of a randomly chosen subset of model features through training. Each layer’s features are displayed
in a di↵erent block. Within each block, we show a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64].
The visualization shows the strongest activation (across all training examples) for a given feature map, projected down to
pixel space using our deconvnet approach. Color contrast is artificially enhanced and the figure is best viewed in electronic
form.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation Degrees

P(
tru

e c
las

s)

 

 

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

��� ��� ��� � �� �� ��
�

1

�

3

�

5

�

7

8

9

��

Vertical Translation (Pixels)

Ca
no

nic
al 

Di
sta

nc
e

 

 

Lawn Mower
��	����

African Crocodile
African Grey
Entertrainment Center

−60 −40 −20 0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Vertical Translation (Pixels)

Ca
no

nic
al 

Di
sta

nc
e

 

 

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Scale (Ratio)

Ca
no

nic
al 

Di
sta

nc
e

 

 

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Rotation Degrees

Ca
no

nic
al 

Di
sta

nc
e

 

 

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

−60 −40 −20 0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vertical Translation (Pixels)

P(
tru

e c
las

s)

 

 

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale (Ratio)

P(
tru

e c
las

s)

 

 

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

a1#

c1#

a3#

c3# c4#

a4#

1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

Scale (Ratio)

Ca
no

nic
al 

Di
sta

nc
e

 

 

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

0 50 100 150 200 250 300 350
0

5

10

15

Rotation Degrees

Ca
no

nic
al 

Di
sta

nc
e

 

 

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

a2#

b3# b4#b2#b1#

c2#

Figure 5. Analysis of vertical translation, scale, and rotation invariance within the model (rows a-c respectively). Col 1: 5
example images undergoing the transformations. Col 2 & 3: Euclidean distance between feature vectors from the original
and transformed images in layers 1 and 7 respectively. Col 4: the probability of the true label for each image, as the
image is transformed.
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Training procedure
same as before

I 6 old features: used old detectors trained in 2013
I libsvm
I rbf / expχ2

I 30 new features: trained detectors using same images
I liblinear
I homogeneous kernel map, order 0 / 1 / 2
I histogram intersection
I hard negative mining

purpose dataset videos shots images comment
development IACC.1.* 28003 546530 546530 keyframes
validation IACC.2.A 2418 112677 1679245 i-frames
evaluation IACC.2.B 2373 106913 1573832 i-frames



Detection procedure
same as before

I detections scores calculated for each i-frame
I feature-wise scores fused in each i-frame

I arithmetic mean
I no concept-dependent feature selection
I no concept- or feature-dependent weighting

I i-frame-wise scores fused in each shot
I maximum value with no within-shot weighting
I no between-shot / within-video processing
I no between-concept processing
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Run 4 Muminpappan, MXIAP = 0.2000 (0.1951)
our best TRECVID 2013 result

feature dim. classifier MXIAP
ColorSIFTds-1x1-2x2 5000 SVM expχ2 0.1609
SIFTds-1x1-2x2 5000 SVM expχ2 0.1537
SIFT-1x1-2x2 5000 SVM expχ2 0.1368
ColorSIFT-1x1-2x2 5000 SVM expχ2 0.1330
OCVCentrist 1302 SVM RBF 0.1173
scalablecolor 256 SVM RBF 0.0437
fusion 0.2000
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Fisher vector, VLAD, LBP and SIFT features
experimented with in fall 2013

feature dim. classifier MXIAP
ColorSIFTds-1x1-2x2-1x3 8000 lin hkm1 int 0.1259
ColorSIFT-1x1-2x2-1x3 8000 lin hkm1 int 0.0989
OCVMlhmsLbp-10-1234 10240 lin hkm1 int 0.0915
OCVMlhmsLbp-10-12 5120 lin hkm1 int 0.0762
vlfeat-dsift-128-gmm-128-FV 32768 lin int 0.1251
vlfeat-dsift-128-kmeans-512-VLAD 65536 lin int 0.1392
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CNN activation features
extraction and detector training

I 4 different CNN Caffe networks trained:
I two training sets: ILSVRC 2010 and 2012
I two network architectures: Krizhevsky (2012) and Zeiler &

Fergus (2013)
I two image scalings: aspect ratio preserving (Zeiler) and

distorting (Krizhevsky)
I 24 different CNN Layer 6 activation features

I four networks above
I three feature-level fusions: center only, average, maximum
I full image features or two-level spatial pyramid

I liblinear + HKM order 2 + histogram intersection



CNN activation features
increasing their number

feature dim. classifier MXIAP
worst individual full 4096 lin hkm2 int 0.1550
best individual full 4096 lin hkm2 int 0.1979
worst individual pyram. 8192 lin hkm2 int 0.2118
best individual pyram. 8192 lin hkm2 int 0.2164
fusion 12 full 0.2637
fusion 12 full + 12 pyram. 0.2759
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Run 3 Hattifnattar, MXIAP = 0.2900 (0.2843)
applying hard negative mining

id setup hard neg.m. MXIAP
0 12 full no 0.2637
1 12 full 1 round 0.2504
2 12 full 2 rounds 0.2585

fusion of 0+1 0.2742
fusion of 0+1+2 0.2737
24 full no 0.2759
24 full, fusion 0+1 0.2900
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Run 2 Snusmumriken, MXIAP = 0.2777 (0.2722)
combining most of the detectors

I 4 old SIFT/ColorSIFT BoV features
I old centrist feature
I old scalablecolor feature
I 2 new ColorSIFT 3-level pyramid features
I new Fisher vector feature
I new VLAD feature
I 24 new CNN activation features
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Run 1 Mårran, MXIAP = 0.2936 (0.2880)
everything put together

I like Hattifnattar and Snusmumriken combined
I one round of hard negative mining with CNN features
I all features
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Run 1 Mårran, Concept-wise results
top results for concepts 27 and 71
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Conclusions

I CNN activation features have a great promise as universal
image representation:

I fast to extract (≈ 100ms CPU)
I moderate feature dimensionalities
I superior accuracy
I suitable for use with linear classifiers (≈ 1ms CPU)
I variations can be generated
I fusion provides additional accuracy

I hard negative mining is useful, but not many rounds are
needed
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Demo with a documentary film
breaking the ice



Demo with a documentary film
entering the room
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